Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans.
نویسندگان
چکیده
The catabolism of fatty acids is important in the lifestyle of many fungi, including plant and animal pathogens. This has been investigated in Aspergillus nidulans, which can grow on acetate and fatty acids as sources of carbon, resulting in the production of acetyl coenzyme A (CoA). Acetyl-CoA is metabolized via the glyoxalate bypass, located in peroxisomes, enabling gluconeogenesis. Acetate induction of enzymes specific for acetate utilization as well as glyoxalate bypass enzymes is via the Zn2-Cys6 binuclear cluster activator FacB. However, enzymes of the glyoxalate bypass as well as fatty acid beta-oxidation and peroxisomal proteins are also inducible by fatty acids. We have isolated mutants that cannot grow on fatty acids. Two of the corresponding genes, farA and farB, encode two highly conserved families of related Zn2-Cys6 binuclear proteins present in filamentous ascomycetes, including plant pathogens. A single ortholog is found in the yeasts Candida albicans, Debaryomyces hansenii, and Yarrowia lipolytica, but not in the Ashbya, Kluyveromyces, Saccharomyces lineage. Northern blot analysis has shown that deletion of the farA gene eliminates induction of a number of genes by both short- and long-chain fatty acids, while deletion of the farB gene eliminates short-chain induction. An identical core 6-bp in vitro binding site for each protein has been identified in genes encoding glyoxalate bypass, beta-oxidation, and peroxisomal functions. This sequence is overrepresented in the 5' region of genes predicted to be fatty acid induced in other filamentous ascomycetes, C. albicans, D. hansenii, and Y. lipolytica, but not in the corresponding genes in Saccharomyces cerevisiae.
منابع مشابه
Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans.
Oxylipins called psi factors have been shown to alter the ratio of asexual to sexual sporulation in the filamentous fungus Aspergillus nidulans. Analysis of the A. nidulans genome has led to the identification of three fatty acid oxygenases (PpoA, PpoB and PpoC) predicted to produce psi factors. Here, it is reported that deletion of ppoB (DeltappoB) reduced production of the oleic-acid-derived ...
متن کاملCharacterization of the Far Transcription Factor Family in Aspergillus flavus
Metabolism of fatty acids is a critical requirement for the pathogenesis of oil seed pathogens including the fungus Aspergillus flavus Previous studies have correlated decreased ability to grow on fatty acids with reduced virulence of this fungus on host seed. Two fatty acid metabolism regulatory transcription factors, FarA and FarB, have been described in other filamentous fungi. Unexpectedly,...
متن کاملProtein kinase C (PkcA) of Aspergillus nidulans is involved in penicillin production.
The biosynthesis of the beta-lactam antibiotic penicillin in the filamentous fungus Aspergillus nidulans is catalyzed by three enzymes that are encoded by the acvA, ipnA, and aatA genes. A variety of cis-acting DNA elements and regulatory factors form a complex regulatory network controlling these beta-lactam biosynthesis genes. Regulators involved include the CCAAT-binding complex AnCF and AnB...
متن کاملDown-Regulation of sidB Gene by Use of RNA Interference in Aspergillus nidulans
Background: Introduction of the RNA interference (RNAi) machinery has guided the researchers to discover the function of essential vital or virulence factor genes in the microorganisms such as fungi. In the filamentous fungus Aspergillus nidulans, the gene sidB plays an essential role in septation, conidiation and vegetative hyphal growth. In the present study, we benefited from the RNAi strate...
متن کاملCharacterization of the Aspergillus parasiticus delta12-desaturase gene: a role for lipid metabolism in the Aspergillus-seed interaction.
In the mycotoxigenic oilseed pathogens Aspergillus flavus and Aspergillus parasiticus and the model filamentous fungus Aspergillus nidulans, unsaturated fatty acids and their derivatives act as important developmental signals that affect asexual conidiospore, sexual ascospore and/or sclerotial development. To dissect the relationship between lipid metabolism and fungal development, an A. parasi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 5 5 شماره
صفحات -
تاریخ انتشار 2006